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Abstract

A necessary condition for the existence of global ob-
servers is the detectability of the plant, i.e. the con-
vergence of indistinguishable trajectories. If non con-
verging indistinguishable trajectories exist, i.e. so
called bad trajectories, then no (strong) observer ex-
ists. In this paper weak observers are proposed for a
class of systems that can have bad trajectories. The
convergence is assured for a set of plant’s trajectories
that excludes the bad ones. This set is characterized
by conditions on the plant’s trajectories that resem-
bles and generalizes the persistently exciting condi-
tions, well-known in the identification and adaptive
control literature.

1 Introduction

An intensive research activity has been done in the
last years aiming at developing design strategies for
nonlinear observers, and different methods have been
proposed [10, 12].

One special difficulty with nonlinear systems
is that the observability/detectability properties are
input (trajectory) dependent, i.e. two initial states
can be distinguishable using some input function
but indistinguishable with other input functions, so
called bad inputs [13]. This constitutes a kind of
singular situation for the observation problem [4],
and the existence of bad inputs makes it very dif-
ficult to design an observer. Most observer design
methods exclude systems with bad inputs: The ex-
istence of high-gain observers requires uniform ob-
servability for every input [6], and the classical error
linearization methods [9] impose even stronger con-
ditions on the system’s observability properties. The
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detectability of nonlinear systems has been studied in
different aspects, especially in the context of the re-
lationship between input/output and Lyapunov sta-
bility. However, the relationship between detectabil-
ity and the observer design problem has not been
yet completely clarified and only some partial re-
sults have been obtained [?, 14]. Systems with bad
trajectories constitute an important class. For ex-
ample, the parameter identification problem leads to
observation problems for this kind of systems. Most
known observer design results for such systems are
derived for those affine in the unmeasured variables
[4, 7, 12], or transformable to them. In this case the
observer can be basically designed as one for a linear
time varying system. The required uniform observ-
ability conditions for the linear system correspond
then to the persistence of excitation conditions, orig-
inally introduced for parameter identification. How-
ever, for systems nonlinear in the unmeasured vari-
ables almost no results are known. Sometimes they
can be transformed to the affine case by immersion in
a higher dimensional system, but this leads to prob-
lems similar to those caused by overparametrization
in identification and adaptive control. So it is im-
portant to treat the general case in a direct manner,
as it has been done recently for the identification of
nonlinearly parameterized systems [3].

The objective of this paper is to propose a
method to design observers for a class of systems that
can have bad trajectories, and the unmeasured vari-
ables are not required to enter linearly. The system
class and the design idea, based on the use of the
circle criterion, constitute a generalization of those
proposed by [1, 5]. However, despite of the similar-
ities, the objectives are completely different: [1, 5]
aims at the elimination of the linear growth assump-
tion for the nonlinearities and the system class is so
restricted, that bad trajectories are excluded. Our
objective is the design of observers for systems with
bad trajectories, and the class of systems is extended
to allow for these singularities. For simplicity only
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the global case will be considered.
The rest of the paper is organized in the fol-

lowing form. In the next Section a preliminary dis-
cussion is given on the class of observers that are
meaningful for systems with bad trajectories. The
class of systems to be considered in this work is intro-
duced in Section 3. This class includes systems with
bad trajectories and that are nonlinear in the unmea-
sured variables. The proposed method is described
in Section 4. In Section 5 an illustrative example is
presented.

2 Detectability and Existence

of Observers

Consider the nonlinear system

Σ̃ :

{

ẋ = f (x, u) , x (0) = x0

y = h (x) ,
(1)

where x ∈ R
n is the state vector, u ∈ R

p is the input
vector, and y ∈ R

m is the output vector. f , and h
are sufficiently smooth so that existence and unique-
ness of solutions is guaranteed. The solution of Σ
which passes through x0 at t = 0, corresponding to
the input function u (·), is denoted as x (t, x0, u (·)),
and y (t, x0, u (·)) = h (x (t, x0, u (·))) represents the
output. If there is no confusion they will be written
as x (t) and y (t).

If for Σ̃ an input u (·) and two initial con-
ditions x̄, x are given, such that y (t, x, u (·)) =
y (t, x̄, u (·)), for all t ≥ 0, then x̄ and x are u (·)-
indistinguishable. Denote by I(u,x) the set of all

u (·)-indistinguishable states from x. Σ̃ is observ-
able if for every x, and every u (·) it is satisfied
that I(u,x) = {x}. Σ̃ is detectable if for every x,
if x̄ ∈ I(u,x) then their trajectories converge, i.e.

limt→∞ ‖x(t, x̄, u (t))− x(t, x, u (t))‖ = 0. If Σ̃ is not
detectable, then there exist diverging indistinguish-
able, i.e. bad trajectories, which correspond to some
bad input.

An observer for Σ̃ is a dynamical system Ω
that has as inputs the input u and the output y of
Σ̃, and its output x̂ is an estimation of the state x
of Σ̃. Ω is a strong observer if there is some ini-
tial condition of Ω such that for every trajectory
of Σ̃ the estimation x̂ converges to the state x, i.e.
limt→∞ ‖x̂(t) − x(t)‖ = 0. Ω is a weak observer if
the convergence is only assured for a proper subset
of the trajectories of Σ̃.

Note that local observers are a kind of weak
ones. However, our interest here is more on global
observers that exclude some plant trajectories. The

following result is a simple consequence of the defi-
nitions.

Lemma 1 If Σ̃ has a strong observer, then Σ̃ is de-
tectable. I.e. if Σ̃ has bad inputs (trajectories) then
it does not have a strong observer.

The importance of this simple result is that in
the design of observers for system with bad inputs it
is indispensable to allow the observer not to converge
for some system trajectories, including the set of bad
ones. Since the aim of most observer design methods
is the design of strong observers, they have to exclude
the class of systems with bad trajectories.

Since for linear systems the lack of detectabil-
ity excludes the possibility of designing any reason-
able observer (the set of excluded trajectories is very
big), a comment is in order to explain why this is
not necessarily the case for nonlinear systems. Since
for analytical systems the set of bad inputs is generi-
cally very small [13], then one can reasonably expect
that the set of trajectories that has to be excluded
from the set of those leading to the convergence of
the observer is also small. This is confirmed in the
literature of observer design for systems linear in the
unmeasured states [4, 7] and in the adaptive control
and identification literature [11]. In these cases the
set of trajectories for which the observer converge
is characterized by means of persistence of excita-
tion conditions. Weak observers constitute therefore
an important class of observers, and in the following
Section a method is proposed to design them for a
class of systems. The class of trajectories for which
the observer is assured to converge will be character-
ized by generalized persistence of excitation.

3 Problem Formulation

Consider a plant that can be brought to the form

Σ :







ẋ = Ax+Gψ (σ, u) + ϕ (t, y, u) , x (0) = x0

y = Cx ,
σ = Hx

(2)
where x, u, y are as for (1), and σ ∈ R

r is a (not
necessarily measured) linear function of the state.
ϕ (t, y, u) is an arbitrary nonlinear function of the
time, the input and the output. ψ (σ, u) is an r-
dimensional vector that depends on the input and σ.
ψ and ϕ are assumed to be locally Lipschitz in σ or y,
continuous in u, and piecewise continuous in t. Since
the plant Σ is not assumed globally Lipschitz the
global existence of solutions is not guaranteed, i.e.
for some initial conditions and inputs finite escape
time is possible. This is a not desirable situation
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and will be excluded by assuming that Σ (2) is either
complete, i.e. the state trajectories x (t) are defined
for every t ≥ 0, every initial condition x0 ∈ R

n and
every input u (·) ∈ U , or the initial states and/or
inputs are so restricted that the state trajectory is
locally bounded, i.e. x (t) ∈ L∞e. This class includes
the one proposed in [1], but it includes systems with
bad trajectories (see the example in Section 5).

An (strong or weak) observer for Σ of the form

Ω :















·

x̂ = Ax̂+ L (y − ŷ) +Gψ (σ̂ +N (y − ŷ) , u) +
+ϕ (t, y, u) , x̂ (0) = x̂0

ŷ = Cx̂ ,
σ̂ = Hx̂

(3)
is proposed, where matrices L ∈ R

n×p, and N ∈
R

r×p have to be designed. Defining the state esti-
mation error e , x − x̂, the output estimation er-
ror ỹ , y − ŷ, and the function estimation error
σ̃ , σ − σ̂, the dynamics of e is given by

ė = (A− LC) e+G [ψ (σ, u) − ψ (σ̂ +Nỹ, u)] ,
ỹ = Ce , e (0) = e0 = x0 − x̂0

σ̃ = He .

Note that σ̂+Nỹ = Hx̂+NCe = Hx−He+NCe =
σ − (H −NC) e. Defining

z , (H −NC) e = σ̃ −Nỹ

φ (z, σ, u) , ψ (σ, u) − ψ (σ − z, u) , (4)

the dynamics of the error can be written as

Ξ :

{

ė = ALe+Gφ (z, σ, u) , e (0) = e0
z = HNe ,

(5)

where AL , A − LC, and HN , H − NC. Note
that φ (0, σ, u) = 0 for all σ and u. The error dy-
namics (5) is not autonomous, as in the linear case,
but it is driven by the plant (2) through its input
u, and the linear function of the state σ = Hx. φ
is therefore a time varying nonlinearity, whose time
variation depends on the input/state trajectory of
the plant. It will be assumed that the memory-
less function φ (z, σ, u), that is given by the problem
data, belongs to a sector [K1,K2] with respect to z,
where K1,K2 ∈ R

r×r are constant, quadratic matri-
ces, such that K , K2 −K1 = KT > 0, i.e. K is a
positive definite symmetric matrix. This means that
(see [8])

[φ (z, σ, u) −K1z]
T

[φ (z, σ, u) −K2z] ≤ 0 (6)

for all (z, σ, u). In case K2 = ∞, i.e. for a non Lip-
schitz nonlinearity, the sector condition (6) becomes
zT [φ (z, σ, u) −K1z] ≥ 0. If the inequality is strict
then the sector is written as (K1,K2], [K1,K2), or
(K1,K2). Note that a sector is a conic subset of R

2r.

4 Observer Design Method

The error dynamics Ξ (5) is a feedback connection
of a LTI system and a time-varying non linearity.
For these kinds of systems the circle criterion [8] is
a sufficient asymptotic stability condition for non-
linearities in a sector. The sector of stability is a
property of the LTI subsystem, i.e. given the sys-
tem matrices (HN , AL, G) there is a stability sector
(Ka

1 ,K
a
2 ) such that Ξ has e = 0 as a global asymptot-

ically stable equilibrium point for every nonlinearity
φ (z, t) belonging to any sector contained in the sta-
bility sector, i.e. φ ∈ [K1,K2] ⊂ (Ka

1 ,K
a
2 ). Note

that (Ka
1 ,K

a
2 ) is a function of the matrices L and N .

4.1 Strong observers

If the Σ is detectable, then one can expect to be able
to design a strong observer. If there exist L and N
such that the stability sector of Ξ (5) contains the
nonlinearity sector [K1,K2], then Ω given by (3) is
an observer for the plant Σ, that converges exponen-
tially fast for every (locally bounded) system trajec-
tory. Theorem 2 is an improvement of Theorem 1 in
[1].

Theorem 2 Consider the plant Σ (2). If there exist
matrices L and N such that

a) If φ ∈ [K1,∞]

PÃL + ÃT
LP = −RTR− εP
PG = −HT

N

, (7)

b) If φ ∈ [K1,K2], with K = K2−K1 = KT >
0,

PÃL + ÃT
LP = −RTR− εP

PG = −HT
NK

T −RTW
WTW = I

,

with ÃL = AL + GK1HN , are satisfied for
some P = PT > 0, ε > 0, and matrices R, W , then,
there exist constants κ, β > 0 such that for Ξ (5)

‖e (t)‖ ≤ κ ‖e (0)‖ exp (−βt) , ∀t ≥ 0 ,

for every locally bounded trajectory of the plant, i.e.
system Ω (3) is a strong observer for the plant.

Proof. Only the case (a) will be considered.
Case (b) follows the same path. Consider that (7)
is satisfied. Take V (e) = (1/2) eTPe as a Lyapunov
function candidate for the observation error (5). Its
time derivative along their trajectories is

V̇ (e) = 1
2e

T
[

PAL +AT
LP

]

e+ eTPGφ (z, σ, u)

= 1
2e

T
[

PÃL + ÃT
LP

]

e+ eTPG (φ−K1HN e)

= −εV (e) − 1
2e

TRTRe− eTHT
N (φ−K1HN e)

≤ −εV (e) − zT (φ−K1z) ≤ −εV (e) ,
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since φ ∈ [K1,∞]. The conclusion follows.
Note also, that no observability or controlla-

bility is assumed for the linear system in Ξ, in con-
trast to the circle criterion.

4.2 Weak observers

If system Σ does have bad trajectories, then because
of Lemma 1 no strong observer exists, and Theorem
2 cannot be satisfied. However, the following two
step procedure can lead to a weak observer. For sim-
plicity, only the special case when the nonlinearity
belongs to the sector φ ∈ [K1,∞] will be considered,
but the same principle applies in general.

4.2.1 Sector inclusion

Selecting matrices L and N the stability sector
of the LTI system (HN , AL, G) can be adjusted.
Once again for simplicity, only stability sectors
(Ka

1 ,∞] with infinity upper bound will be consid-
ered. Since the strong observer condition [K1,∞] ⊂
(Ka

1 ,∞], that is equivalent to the matrix inequality
Ka

1 (L,N) < K1, cannot be satisfied, a reasonable
objective is to maximize the intersection between the
sector of the nonlinearity [K1,∞] and the stability
sector of the LTI system (Ka

1 ,∞]. So L and N will
be selected such that

min
L,N

λmin

{

Ka
1 (L,N) +KaT

1 −K1 −KT
1 − δI

}

,

(8)
where λmin {M} is the minimum value of matrix M ,
and δ > 0 is a small regularization term for the min-
imization problem. This term is necessary since Ka

1

satisfies (7) with ε = 0, and no asymptotic stability
is assured. The value of Ka

1 obtained by the mini-
mization will be called K̃1.

4.2.2 Conditioned convergence

The circle criterion assures stability of the observer

Ω (3) only for nonlinearities in the sector
[

K̃1,∞
]

⊂
[K1,∞]. Since the nonlinearity φ (z, σ, u) depends
on the plant signals (σ, u), external to the error sys-
tem Ξ, by restricting the values of (σ, u) it is in gen-

eral possible to maintain φ in the sector
[

K̃1,∞
]

,

guaranteeing observer convergence. This condition
imposes a strong restriction on the plant trajecto-
ries. However, signals (σ, u) can take values for which

φ (·, σ, u) /∈
[

K̃1,∞
]

as long as this sector violation

is only temporal. System Ω (3) becomes then a weak
observer, whose convergence is dependent on the val-
ues of the plant’s variables (σ, u).

The convergence conditions can be found by a
Lyapunov analysis. Note that system (HN , AL, G)

satisfies (7) for the sector
[

K̃1,∞
]

for some ma-

trices L and N . Taking the derivative of V (e) =
(1/2) eTPe along the trajectories of Ξ is

V̇ (e) ≤ −εV (e) − zT
(

φ− K̃1z
)

. (9)

Since φ ∈ [K1,∞], the term zT
(

φ− K̃1z
)

is

bounded below by a quadratic form in z, i.e.

zT
(

φ− K̃1z
)

≥ θ (σ, u) ‖z‖2
, (10)

and θ (σ, u) ≥ b, a constant. For values of (σ, u)

such that θ (σ, u) ≥ 0 the nonlinearity φ ∈
[

K̃1,∞
]

,

whereas when θ (σ, u) < 0 the nonlinearity φ (·, σ, u)
leaves the sector. If for all (σ, u), θ (σ, u) ≥ 0 then
the strong observer case in Theorem 2 is recovered.

Using (10) in (9)

V̇ ≤ −εV − θ (σ, u) ‖z‖2 ≤ − [ε− % (σ, u)]V ,

where

% (σ, u) , −λH

λP

θ (σ, u)

{

1 if θ (σ, u) < 0
0 if θ (σ, u) ≥ 0

,

(11)
and λm, λM and λH are the minimal and maxi-
mal eigenvalues of P and the maximal eigenvalue of
HT

NHN , respectively. By the comparison lemma [8]
it follows that

V (t) ≤ exp [−η (t, t0)]V (t0) ,

where

η (t, t0) , ε (t− t0) −
∫ t

t0

% (σ (τ) , u (τ)) dτ . (12)

Note that if
lim

t→∞

η (t, t0) = ∞ , (13)

then limt→∞ ‖e (t)‖ = 0, and so the estimation error
converges to zero. However, this convergence is not
necessarily uniform. If instead it is satisfied

∫ t

t0

% (σ (τ) , u (τ)) dτ ≤ α (t− t0) + γ (14)

with α, γ ∈ R, and α < ε, then

V (t) ≤ exp [−η (t, t0)]V (t0)

≤ exp [γ] exp [− (ε− α) (t− t0)]V (t0)

and therefore

‖e (t)‖ ≤
√

λM exp [γ]

λm

exp

[

− (ε− α)

2
(t− t0)

]

‖e0‖ ,

i.e. the estimation error converges exponentially to
zero. This proves the following theorem
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Theorem 3 Consider Σ (2). Suppose that there ex-
ist matrices L and N such that equations (7) are
satisfied for some P = PT > 0, ε > 0, R, and K̃1,
that solves (8). Suppose that φ belongs to the sec-
tor φ ∈ [K1,∞]. If condition (13) is satisfied, where
η (t, t0) is defined in (12), then the estimation error
converges to zero, i.e. limt→∞ ‖e (t)‖ = 0. If, more-
over, condition (14) is satisfied, such that α, γ ∈ R,
and α < ε, then there exist positive constants κ, and
β such that

‖e (t)‖ ≤ κ ‖e (t0)‖ exp (−β (t− t0)) , ∀t ≥ t0 .

In both cases Ω (3) is a weak observer for Σ.

Remark 4 Theorem 3 is a generalization of theorem
2. The latter corresponds to the former when α, and
γ can be set to zero.

Remark 5 Condition (14) is stronger than condi-
tion (13). Since the values of η (t, t0) depend on the
trajectories of the plant Σ, these conditions consti-
tute a restriction on the set of system’s trajectories,
i.e. trajectories that satisfy such conditions are con-
tained in a subset (a proper one if there are diverging
bad inputs) of the set of plant’s trajectories. These
conditions are similar to the persistence of excitation
conditions well known in the parameter identification
and adaptive control literature [11], or similar con-
ditions in the observer literature [2, 7].

Remark 6 Recall that if the nonlinearity is in the
stability sector then condition (14) is satisfied. How-
ever, this condition allows the nonlinearity to aban-
don this sector, and global exponential stability is still
assured as long as the condition is satisfied. If only
condition (13) is satisfied, then not stability but just
convergence is assured. Some conditions that imply
condition (14) are (see [8, Lemma 9.5]):

1. If
∫

∞

0

% (σ (τ) , u (τ)) dτ ≤ k

then (14) is satisfied with α = 0, and γ = k.

2. If
% (σ (t) , u (t)) → 0 as t→ ∞

then for any α > 0, there is γ = γ (α) > 0 such
that (14) is satisfied.

3. If there are constants ∆ > 0, T ≥ 0, and α1 > 0
such that

1

∆

∫ t+∆

t

% (σ (τ) , u (τ)) dτ ≤ α1 , ∀t ≥ T

then (14) is satisfied with α = α1, and γ =

α1∆ +
∫ T

0
% (σ (τ) , u (τ)) dτ .

5 Example

For illustration consider the system

Σ :







ẋ1 = −x1 + g (x2) ,
ẋ2 = −ax2 + u ,
y = x1 ,

with g (x2) = x2

(

x2
2 − 1

)

. This system has bad in-
puts for a = 0, since u = 0 makes indistinguishable,
for example, the initial states (x10, 0) and (x10, 1),
and their trajectories do not converge to each other,
i.e. Σ is not detectable. However, for a > 0 the
system is detectable and does not have bad inputs.
This system can be written in the form (2), and the
error equation (5) is given with

AL =

[

−1 − l1 1
−l2 −a

]

, G = CT =

[

1
0

]

,HT
N =

[

−k
1

]

σ = x2 , φ (z, σ) = z
(

z2 − 3σz + 3σ2 − 2
)

.

For fixed σ the nonlinearity belongs to the sector
φ ∈

[

3σ2/4 − 2,∞
]

, and to the sector φ ∈ [−2,∞]
for all the values of σ. Note that the sector of the
nonlinearity depends on the values taken by the plant
state σ = x2. If, for example, the initial states and
the input to the plant are so selected that for all
t ≥ 0, |x2 (t)| ≥ 2, then the resulting nonlinearity
φ (z, σ (t)) will stay in the sector [1,∞].

For this simple SISO case the satisfaction of
the circle criterium can be interpreted in the fre-
quency domain. The transfer function of the linear
part of the error equation is given by

G (s) =
k (s+ a) + l2

s2 + (l1 + a+ 1) s+ (l1 + 1) a+ l2
.

In this case the satisfaction of the circle criterion
for the sector [%,∞] corresponds to the selection
of the parameters (k, l1, l2) so that the loop trans-
formed transfer matrix H (s) = G (s) / (1 + %G (s))
is SPR [8]. This is the case iff both numerator and
denominator polynomials of H (s) are Hurwitz and
(%k + l1 + a+ 1) > a + l2/k > 0. If a > 0 it is pos-
sible to satisfy the circle criterion for % = −2, i.e.
the designed observer converge for every trajectory
of the system, i.e. it is a strong one.

If a = 0, the plant is not detectable, but a
weak observer can be designed. If in (8) δ = 0 is
set, the maximal stability sector of the LTI system
is found to be (Ka

1 ,∞] = (−1,∞], and so the non-
linearity sector cannot be completely covered. If the
trajectories of the plant are so restricted, that σ = x2

satisfies |σ| > 2/
√

3, then the nonlinearity will stay
in the sector (−1,∞] and the observer will converge.
However, if σ takes values |σ| ≤ 2/

√
3, then the ob-

server will converge if the ”persistence of excitation”
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Figure 1: Simulation results for the example with
the following parameters: a = 0 , k = 2 , l1 = 200 ,
l2 = 120 , x0 = 0 , e0 = (70,−50). Shown are
the input applied u, the state variable x2, and the
estimation errors e1, e2.

condition (14) is satisfied, i.e. if σ does not stay for
a long time in the set |σ| ≤ 2/

√
3. The simulation

shown in figure 1 illustrates this behavior. Note that
as long as |σ| ≤ 2/

√
3 the estimation error e2 does

not converge, but as soon as |σ| > 2/
√

3 the conver-
gence is fast.

6 Conclusions

A new method for the design of nonlinear observers
for a class of systems with bad trajectories has
been proposed. The class of system’s trajectories
for which convergence is assured is characterized in
terms of conditions similar to the persistency of exci-
tation ones of the parameter identification literature.
Since this paper represents a proposal, many issues
have to be addressed. In particular, the use of LMIs
for the design is under study.
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